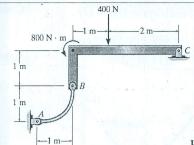
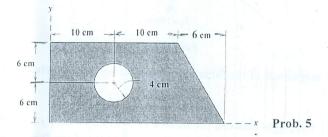


Mansoura University	Final-Term Exam (2)	Course: Mechanics (1)
Faculty of Engineering	Program: B.C.E.	Time: 2 hr
Lecturer: Pr. Hamed Nour	23 / 12 / 2017	Course code: MATH 002

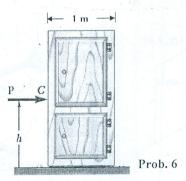


Prob. 1

- 1- Determine the magnitude of the force F₄ required to keep equilibrium. (10 Marks)
- 2- Determine: (1) The angle between the force F (F = 219.8 i + 54.9 j 329.7 k) and the line AO (from point A to point O), and (2) the components of the force acting parallel (F_H) and perpendicular (F_I) to the line AO. (7 Marks)



3- If $F_1 = -4 i + 1 j - 2 k$ Ib, $F_2 = 2 i + 0 j - 4 k$ Ib and $M_a = 21 i - 6 j - 10 k$ Ib.ft, determine the equivalent force – couple system $(F_R - M_R)$ at point O(0, 0, 0). (8 Marks)



Prob. 4

4- The beam BC is supported by a pin at C and two-force member AB. Determine the reactions at the pin support C. (7 Marks)

5- Determine the centroid coordinates $(\overline{x}, \overline{y})$ of the shaded area. (9 marks)

6- The uniform crate shown has a weight of 500 N, the force P=200 N and h=1.5 m. The coefficient of static friction is $\mu_s=0.5$. Determine if it remains in equilibrium.

(9 Marks) 2/2

أطيب التمنيات.