Manoura University
Faculty of Engineering
Building & Construction Engineering Program
Fall Semester 2012/2013

Course Title: Physics 1
Course Code: PHYS 011



Final Exam (50%) Time: 2 hours Date: 15<sup>th</sup> Jan 2013

#### **Answer All Questions**

Questions No. 1: (13 Marks)

1-a) Draw the heating curve of water.

(2 Degrees)

1-b) Write down the advantages and disadvantages of constant volume gas thermometers. (2 Degrees)

 $_{1-c)}$  A 100 g of ice at -15 °C is added to 200 g of water at 12 °C. (i) What is the final temperature of the system? (ii) Find the composition of the system after equilibrium. Take the specific heat for water is 4186 J/Kg°C and for ice is 2100 J/Kg°C and the latent heat of fusion for ice is  $3.337 \times 10^5$  J/Kg. (4 Degrees)

1-d) A long-thin wire of steel was stretched at 25 °C between two rigid points so that the wire had an initial tensile stress of  $1.2\times10^7$  Pa. (i) At what temperature the wire will be released from the stress? (ii) What is the magnitude of stress at 15 °C? (iii) What is magnitude of stress at 50 °C? Take the linear expansion coefficient of steel is  $12\times10^{-6}$  C<sup>-1</sup> and the Young's modulus is  $2\times10^{11}$  Pa. (5 Degrees)

## Questions No. 2: (12 Marks)

2-a) A box with a total surface area of  $0.2m^2$  and a wall thickness of 7 mm is made of insulating material. A 30-W electric heater inside the box maintains the average temperature of the inside surface of the box is 17 °C above that of the outside surface. Find the thermal conductivity of the insulating material. (4 <u>Degrees</u>)

2-b) An ideal gas with an initial volume of  $0.01~\text{m}^3$  and an initial pressure of 2.0~MPa expands to final volume of  $1~\text{m}^3$ . The relationship between pressure and volume during the expansion is PV = const. Determine, (i) the value of the constant, (ii) the work done, w, (iii) the heat, Q, and (iv) the change in the internal energy,  $\Delta U$ .

 $_{2\text{-c}}$ ) An ideal gas is taken through a Carnot cycle. The isothermal expansion and compression processes were at 300  $^{\circ}$ C and 50  $^{\circ}$ C, respectively. If the gas absorbs 1000 J of heat during the isothermal expansion, find (i) the work done by the gas in each cycle and (ii) the heat expelled to the cold reservoir in each cycle and. (4 <u>Degrees</u>)

Please turn over

من فضلك اقلب الورق

2 | Pages

### Mechanical properties of metals and waves

## Question 3

- a-A rock climber hangs freely from a nylon rope that is 14 m long and has a diameter of 8.3 mm. If the rope stretches 4.9 cm, what is the mass of the climber? ( $E = 8 \times 10^8 \text{ N/m}^2$ ) [2 marks]
- **b-**For a damped oscillator, m = 250 g, k = 85 N/m, and b = 70 g/s.
  - i) What is the period of the motion? ii) What is the ratio of the amplitude of the damped oscillations to the initial amplitude at the end of 20 cycles? [4 marks]
- c- The displacement of a block attached to a horizontal spring whose spring constant is 12 N/m is given by  $x = 0.5 \sin(4t 0.6)$  m. Find i) The mass of the block, ii) The total energy, and iii) The first time t > 0 when the acceleration equal one-half the maximum value.
- **d-**Sketch: i) The variation of the kinetic energy, potential energy, and total energy as a function of position for simple harmonic motion (SHM).
  - ii) The displacement of all types of damped motion as a function of time. [4 marks]

# **Question 4**

- **a-** With what tension must a string with length 2.5m and mass 0.12 kg be stretched for transverse waves of frequency 40 Hz to have a wavelength of 0.75m? [3 marks]
- **b-** Two independent sound sources individually produce intensity levels of 80 dB and 85 dB at a point. What is the total intensity level at that point? [3 marks]
- **c-** The siren of a police car moving at 40m/s has a natural frequency of 600 Hz. A truck ahead of the car is moving at 20m/s in the same direction. What is the frequency of the sound heard by the truck. (speed of sound = 340 m/s)

my best wishes