Manoura University Faculty of Engineering Engineering Specific Programs Fall Semester 2015/2016 Course Title: Physics-1 BCE, MTE, BME & CIE Final Exam (50%) Time: 2 hours Date: 9th January 2016 ### **Answer All Questions** ### Questions No. 1: (12 Marks) 1-a) Write down the basic idea for making the following thermometers: (i) Constant volume gas thermometer (ii) Bimetallic thermometer (iii) Resistance thermometer (3 Degrees) 1-b) Draw the heating curve of water. (2 Degrees) 1-c) Express only without proving the work done by an ideal gas during the following processes: (اكتب المعادلة فقط لكل إجراء) (i) Constant volume process (ii) Constant pressure process (iii) Isothermal process 1-d) A steel rod is fixed from its two ends at 25 °C. If its temperature is deceased to -15 °C, what is type and magnitude of the stress developed in the rod. Take the thermal expansion coefficient for steel is 12×10^{-6} °C⁻¹ and Young's modulus 2×10^{11} Pa. (4 Degrees) # Questions No. 2: (13 Marks) ----- 2-a) A metal rod is 10 cm long and cross sectional area 3 cm². One end is in contact with steam at 100 °C while the other end contacts a block of ice at 0 °C. In a time 15 minutes 250 g of ice melts. Calculate the thermal conductivity of the metal. Consider heat flows only from end to end. Take the latent heat of fusion of ice is 3.334×10^5 J/Kg. (5 Degrees) c) An ideal gas is taken through a Carnot cycle. If the gas above is 1000 for hear franciscours on be the substitute of in a a h Sul al cas it be all as 717777 ## Mechanical properties of metals and waves (1st term) ### Question 3: (12 marks) - (a) A massive object of m = 5 kg oscillates with simple harmonic motion. Its position as a function of time varies according to the equation: $X(t) = 2 \sin [(\pi/2) t + \pi/6) m$. (i) What is the position and velocity of the object at t = 0 s? (ii) What is the maximum kinetic energy of the object? (iii) If the object is then oscillating in an oil with damping constant b = 10 kg/s, find the amplitude after 1.5 s. - (b) The following data for the length of rubber are obtained as a function of the load (mass) suspended from the end of the strip ($3.0 \text{ mm} \times 3.0 \text{ mm}$ cross section): Load, kg 0.0 0.2 0.4 0.6 0.8 1.0 Length, cm 15.0 16.8 18.6 20.7 23.4 26.4 (i) Draw the stress-strain curve. (iii) Determine the percent elongation. (ii) Determine the approximate value of yield strength. (6 marks) ### Question 4: (13 marks) (a) A standing wave is described by the following equation: $Y(x,t) = (2.0 \text{ cm}) [\sin (20 \text{ m}^{-1}) \text{ x}] \cos (150 \text{ t})$. (i) What is the position of the 3rd antinodes? - (ii) Write the equations of the two waves that make this standing wave. (iii) Find the amplitude at x=15cm - (b) A person in a parked car ($\omega \omega$) sounds the horn. The frequency of the horn's sound is 290 Hz. A driver in an approaching car measures the frequency of the sound coming from the parked car to be 316.0 Hz. What is the speed of the approaching car? ($V_{sound} = 343 \text{ m/sec}$) (4 marks) - (e) The explosion of a firecracker (صوت العجل) in the air at a height of 40 m produces a 100 dB complexed at the ground below. What is the instantaneous total radiated power, assuming that it