Mansoura University Faculty of Engineering Structural Engineering Dept. Geotechnical group

Soil Mechanics & Foundation BCE-level 300 2017-2018-Jan.10th Time: 2 hours -points:50

Any missing data can be assumed reasonably

Question # 1 (12 points)

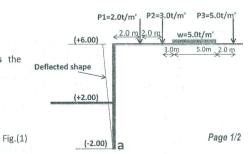
- a) Show how one can graphically determine the over consolidation pressure.
- Explain how one can determine the immediate settlement using the strain influence factor method.
- c) What are the main elements of a soil investigation report?
- d) write whether the following statements are correct or not and correct the wrong one:
- The immediate settlement ends immediately after the primary consolidation.
- The consolidation settlement occurs for all types of dry soils.
- Newmark's chart can be used only for regular shapes? iii.
- For calv soil, the immediate settlement is always higher than primary?
- The active pressure is always higher than passive pressure?

e-Determine the net and gross allowable bearing capacity for a footing B*L where: B=6.0m and L=4.0m, loaded by axial vertical load P = 50.0 tons, M_v = 20.0 m.t & M_v = 40.0 m.t. it is placed at depth 3.0 m and ground water level is at 1.50 m in a clay soil having the following data: $y = 1.7 \text{ t/m}^3$, $C = 0.7 \text{ kg/cm}^2$, the long direction of the footing is parallel to x-axis take factor of safety = 3.0.

Question # 2 (6 points)

- a- Explain the Triaxial test?
- b- The triaxial compression tests on three specimens of a soil sample were performed. Each test was carried out until the specimen experienced shear failure. The test data are tabulated as follows:

Specimen Number	Minor Principal Stress (Kg/cm²)	Deviator Stress at Failure (kg/cm ²)
1	0.7	2.81
2	1.4	3.34
3	2.1	3.66

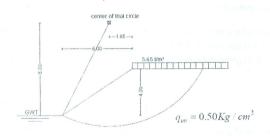

It is required to calculate the soil's cohesion and angle of internal friction

Question #3 (10points):

For the wall shown in Figure (1), it is driven

to a sandy soil with the following properties $y = 1.7 \text{ t/m}^3$, $\phi = 30^\circ$, determine the following:

- a. Draw the earth pressure (active and passive)?
- b. Calculate the moment at point a and discuss the stability of the wall?


Question # 4 (12 points)

For the foundation shown in Figure (2) carries a load of 50 tons and after 3 years of the construction of the footing a 30 tons load has been add to the original load, Determine:

- a. Primary Consolidation settlement under the center of footing after two years of its construction?.
- b. Total settlement after four years from the construction of footing.

Question #5 (10 points)

- a) Explain the modes of failures of finite slopes?
- b) Explain the Ordinary method of slices?
- c) For the slope shown in Fig. (3), determine the factor of safety corresponding to the given failure surface

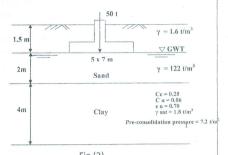
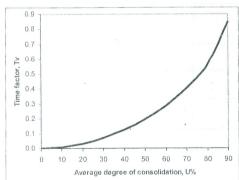



Fig.(3)

1	15.	(~	1		

m = B/z

		8
	0.24	1 20
	0.22	1.4
	0.20	10
	0.18	To, = 1/1 ₆
- et	0.16	0.6
Influence factor I _a	0.14	0.5
ห์ใบยกต	0.12	0.4
12	0.10	
	0.08	0.3
	0.06	0.2
	0.04	
	0.02	
	0 0	1 0 11111
		n=L/z

Ny	N_q	Ne	°φ
-	1,+	٥,٠	صفر
	1,0	٦,٥	٥
٠,٥	۲,۵	۸,٥	1 ×
1,.	£,.	11,.	10
. Y, +	٦,٥	10,.	٧.
٣,٠	λ, .	14,0	44,0
٤,٥	1.,0	. 4 0	40,0
1		1	

Foundation	$\lambda_C - \lambda_0$	λ_{γ}	
Strip	1.0	1.0	
Rectangular	1 + 0.3 B/L	1 - 0.3 B/L	
Square & Circle	1.3	0.7	

Fadum's chart

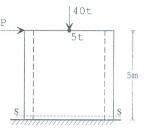
Good luck

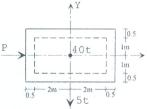
Page 2/2

Dr. Ayman Altahrany

Manoura University Building & Construction Eng. Program Final Exam (50%) Course Title: Structural analysis (2) Course Code: NSTE2

Faculty of Engineering


Time: 2 hours Date: 3 Dec., 2017


Answer All Questions

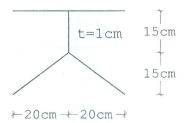
Questions No. 1: (15 Marks)

For the shown pier weighing $\gamma = 2.5 \text{ t/m}^3$:

- a) Determine analytically the maximum allowable value of P if the allowable normal stresses at section s-s do not exceed 1 Kg/m² in tension and 5 Kg/m² in compression. Hence draw the distribution of normal stresses at S-S.
- b) If p=10t, determine the maximum normal stresses at section S-S using the Core method.

Juestions No. 2: (10 Marks)

calculate the spacing S of the bolts if $Q_y = 6t$ and the illowable shearing stress per bolts do not exceed than $350 \ kg/cm^2$ and the diameter of bolts equal $19 \ mm$.

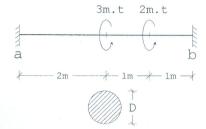

+30 cm + 20 + 30 cm +

ions No. 3: (15 Marks)

ie shown thin-walled steel cross section,

Draw the shear flow distribution due to a vertical shearing force of 10 ton

Find the position of the shear center.



uestions No. 4: (10 Marks)

or the shown beam fixed at "a" and "b", and ubject to the shown twisting moments, determine:

The diameter "D" of the beam cross section if the allowable shear stress = 1.2 t/cm^2 .

2. Draw twisting angle diagrams. Also calculate the maximum shearing stress $(G = 800t/cm^2)$.

