

Masoura University
Faculty of Engineering
Building and Construction Engineering (BCE)
Spring Semester (Final Exam)

(Level 100)

3/6/2014
Time: 2 Hours
Course Code:
Total Mark: 50

Course title: Computer programming

Answer ALL QUESTIONS

Question One: (10 Marks)

What is the result if you execute the following statements in Matlab Command Window?

No	Command entered (one by one)	What I see in Matlab window(s)				
		Command window	Workspace			
1	%% Matlab Final Exam					
2	$A = [3 \ 2]$					
3	B = 3*A;					
4	C = [A;B]					
5	C(4)					
6	C = [1;2;3;4;5];					
7	d=C.^2;					
8	z=A+d					
9	y=A+B					
10	$\cos = 5;$					
11	y = cos(pi)					
12	clear					
13	$z = \cos(pi)$					
14	cftool .					
15	plot(x,y, 'r-o')					
16	x=1; if $x==1$;then $y=0$;end					
17	help sin					
18	xlabel('Population');					
19	s = cell(1,2)					
20	End of Q1		North, et il ika Najeta, ava a			

Question Two: (/4/Marks)

- a) In the problem shown in Figure 1, each element is 4 m long. Construct the matrix you would solve to find the forces in the elements. Use the element and node numbering shown in the figure. (Fmarks)
- b) Write a Matlab script to estimate the columns dimensions (Fig. 2). Also estimate the number of bars in each column. (assume square sections). —marks)
- -Area of concrete = $Load \times 1000/65.84$
- -No. of bars = $0.005 \times \text{Area}$ of the concrete

Question Three: (14 Marks)

- a) Write a Matlab function (beam) to draw the bending moment for a simple beam (Fig. 3) with span L1 subjected to concentrated load p at distance L2 from the left support. (3-marks)
- b) How to Build a Matlab Graphical User Interface (Beam) shown in figure 4 to execute the function (beam1- Question Π.a). (2 marks)

Fig. 4

Question Four: (!2 Marks)

a) Write a Matlab script to find the minimum perimeter of the fenced enclosure consists of a rectangle of length L and width 2R, and a semicircle of radius R, as shown in Figure 5. The enclosure is to be built to have an area A of 1100 m² and the cost of the fence is L.E. 900/m. (6 marks)

b) A part of the results of the Brass tensile test are as follows: (6 marks)

Force (Ib.)	0	39	66	99	132	173	220
Displacement (in)	0	0.001	0.002	0.003	0.004	0.005	0.006

It is required to:

- Obtain a function that describes these data.
- Plot the function and the data on the same plot (change the line color to red and the line style to dotted. Set the label of the axis x as 'Force (Ib)' and the axis y as 'Displacement (in)').

My best wishes

Dr. Samer Mohamed Elabd