Questions No. 3: (12 Marks)

- 3-a) Define with illustrating sketch the phenomena of total internal reflection. (2 Degrees)
- 3-b) Sketch the Michelson's interferometer.

(2 Degrees)

- 3-c) Consider the double-slit arrangement, where the separation of the slits is 0.2 mm and the distance to the screen is 2 m. A transparent thin sheet of thickness 30 μ m and refractive index 1.5 is placed over only the upper slit. Calculate the distance by which the central maximum of the interference pattern moves upward. (4 Degrees)
- 3-d) Monochromatic light of wavelength 632.8 nm is incident normally on a diffraction grating containing 7000 lines/cm. Find the angle of the first-order maximum. (4 Degrees)

Questions No. 4: (13 Marks)

- 4-a) Draw the refractive index profile for both step-index and graded-index optical fibre. (2 Degrees)
- 4-b) In using a polarizer and analyzer in the polarization experiment, the intensity of the final light beam is 12.5% of that of the initial beam (before transmission through the polarizer). Calculate the angle between the transmission axes of the analyzer and polarizer.

 (4 Degrees)
- 4-c) Concerning the interaction of radiation with matter, explain with illustrating sketch, the followings; (i) absorption, (ii) spontaneous emission and (iii) stimulated emission. (3 Degrees)
- 4-d) An electron moves with a speed of 0.95c. Find its total energy and kinetic energy in MeV. Take, for the electron, $m = 9.1 \times 10^{-31}$ Kg and $e = 1.6 \times 10^{-19}$ C and the speed of light is 3×10^8 m/s.

(4 Degrees)

Manoura University Faculty of Engineering **Building & Construction Engineering Program** Spring Semester 2012/2013

Course Title: Physics-2 Course Code: PHYS013

Final Exam (50%) Time: 2 hours Date: 2nd Jun 2013

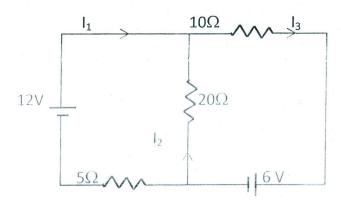
Answer All Questions

Questions No. 1: (12 Marks)

1-a) According to the Fig. shown, consider the electric field at point P is zero. (i) What is sign and magnitude of the charge q? (ii) What is potential at the point P? (4 Degrees)

> q 0 1 μC 0 $\langle 50 \text{ cm} \rangle \langle 50 \text{ cm} \rangle$

1-b) For a thin spherical shell of radius R and charge Q, plot both of the electric field, E, and electric potential, V, versus the distance, r, from the sphere's center. (4 Degrees)


1-c) A charged thin sphere of 10 nC charge. The maximum value of the potential due to this charge is found to be 450 V (i) What is the electric field at 15 cm and at 30 cm from the center? (ii) What is the potential at the center of the sphere? Take $K=9\times10^9$ Nm $^2/C^2$. (4 Degrees)

Questions No. 2: (13 Marks)

2-a) A parallel-plate capacitor of capacitance 2×10⁻¹¹ F is connected with 12 V battery, (i) calculate the charge and the energy stored on the capacitor. (ii) If the battery is then disconnected and a slap of dielectric material of k = 5 is inserted between the plates, calculate the energy stored on the capacitor (5 Degrees) after inserting the dielectric.

2-b) Consider the circuit in the figure shown. Find the currents I₁, I₂ and I₃.

(4 Degrees)

2-c) An electron of kinetic energy 400 eV moves perpendicular to a uniform magnetic field of intensity 0.02 T. Calculate the radius and the period of its orbit. For electron, take m = 9.1 - 10.31 Kg and $e = 1.6 \times 10^{-19} \, \text{C}$