

Final Exam (50%) Time: 2 hours

Answer All Questions

Question 1 [25 Marks]

- (a) Evaluate the integrals: (i) $\int \sqrt{3-x^2} \ dx$ (ii) $\int \sin^{-1} x \ dx$ (iii) $\int \frac{1}{x} \ln \sqrt{x} \ dx$ [11 marks]
- (b) Evaluate the improper integral: $\int_{-\infty}^{\infty} \frac{1+x}{1+x^2} dx$ [4 marks]
- (c) Find the area between the parabola $y^2 = 16x$ and its Latus Rectum. [4 marks]
- (d) Find the area between the curve $y = e^{-x}$ and the x-axis on the interval $[0, \infty)$. If this area is revolved about x-axis, find the volume of the solid of revolution. [6 marks]

Question 2 [25 Marks]

(a) Find the equation of the circle whose center is the point of intersection of the two straight lines: $x^2 + xy - 4x = 0$ and passing through the origin. Find also the angle between the two lines.

- (b) If the eccentricity of the ellipse shown in Fig. is $e = \frac{\sqrt{5}}{3}$
 - Find: (i) The equation of the ellipse
 - (ii) The area of the rhombus ABCD
- (c) For the hyperbola $x^2 y^2 = 9$. Find (i) Eccentricity (ii) Asymptotes (iii) Conjugate hyperbola [4 marks]
- (d) Given the line $\frac{x-1}{2} = \frac{y}{4} = z+2$ and the plane 2x-y+z=1. Find: (i) The point of intersection
 - (ii) Equation of line perpendicular to this plane and passing through the point of intersection.
 - (ii) The angle between the two lines.

[6 marks]

- (e) Identify the surface, $\frac{(x-1)^2}{4} + \frac{(y+3)^2}{4} \frac{(z-2)^2}{9} = 0$. Find the intersection with the planes:
 - (i) x = 1 (ii) z = 2

[5 marks]

With best of luck: Prof. Dr. I. L. El-Kalla