

Mansoura University Faculty of Engineering

Final Exam. Saturday 5/9/2015

Building & Construction Engineering Program

Prof. Dr. Magdi S. El-Azab

Mathematics 2

Time allowed: 2 Hours

Answer the following problems [Full mark 50 pts.]

1. (a) [6 pts.] Evaluate each of the following integrals

(i)
$$I_1 = \int_{-\pi/2}^{\pi/2} (\cos^6 x - x^2 \sin^3 x) dx$$
 (ii) $I_2 = \int_{-\infty}^{\infty} \frac{dx}{1 + x^2}$

$$(ii) I_2 = \int_{-\infty}^{\infty} \frac{dx}{1 + x^2}$$

(iii)
$$I_3 = \int_1^e x^2 (\ln x)^2 dx$$

$$(iv) I_4 = \int (\sec x \, e^{tan})^2 \, dx$$

$$(v) I_5 = \int \cos 4x \cos 2x \, dx$$

$$(vi) I_6 = \int \frac{8x - 1}{(x - 2)(x + 3)} dx$$

(b) [6 pts.] If

$$y'' = 4\pi(\cos 2x - \sin 2x),$$

find y' and y given that $y = \pi^2$, y' = 0, when $x = \frac{\pi}{2}$.

(c) [6 pts.] If
$$f(x) = \int_{x}^{x^2} \frac{\cosh(t^2)}{e^t} dt$$
, find $\frac{df}{dx}$.

2. (a) [6 marks] Find a reduction formula for the following integral

$$I_n = \int (\sin^{-1} x)^n \, dx,$$

and hence evaluate I_3 .

(b) [6 marks] Evaluate the upper and lower values of the integral $\int_{0}^{2\pi} \frac{dx}{\sqrt{16+9\sin^2 x}}$

(c) [6 pts.] Test for convergence or divergence each of the following series

$$(i) \sum_{n=1}^{\infty} \frac{n}{n^2 + 3}$$

$$(ii) \sum_{n=1}^{\infty} \frac{n^3}{4^n}$$

(ii)
$$\sum_{n=1}^{\infty} \frac{n^3}{4^n}$$
 (iii) $\sum_{n=1}^{\infty} \frac{1}{2^n} \left(1 + \frac{1}{n}\right)^{n^2}$

- 3. (a) [6 pts.] Given the function $f(x) = \tan x$, defined on the interval $\left[0, \frac{n}{4}\right]$. Show that this function satisfies the hypotheses of the mean value theorem for differentiation and integration, and then find all the points c satisfying the conclusion of each theorem.
- (b) [6 pts.] Find the area of the region bounded by the curves

$$y = 4 + \sin^3 x$$
, $x = 0$, $x = \frac{\pi}{2}$, $x - axis$.

If this area is rotated about the x-axis, find the volume of the generated solid.

(c) [6 pts.] Find the arc length of the curve $y = x^2$ from x = 0 to x = 1. If this curve rotates about the x-axis, find the area of the generated surface.

With all best wishes