Answer the following questions: (Assuming any missing data)

- 1) Point charges of 50 nC each are located at A(1,0,0), B(-1,0,0), C(0,1,0), and D(0,-1,0) in free space. Find the total force on the charge at A.

 (10 degrees)
- 2) A uniform volume charge density of 80 μ C/m³ is present throughout the region 8 mm < r < 10 mm. (10 degrees)
 - a- Find the total charge inside the spherical surface r=10 mm.
 - b- Find D_r at r=10 mm.
 - c- If there is no charge for r > 10 mm, find D_r at r=20 mm.
- 3) If the potential is given by V=80 r^{0.6}. Assuming free space conditions, find: (5 degrees)
 - a- The electric field E,
 - b- The volume charge density at r=0.5 m, and
 - c- The total charge lying within the surface r=0.6 m.
- 4) The surface x=0 separates two perfect dielectrics. For x>0, let $C_{r1}=3$, while $C_{r2}=5$ where x<0. If $E_{1}=80a_{x}-60a_{y}-30a_{z}$ V/m. Find: (5 degrees)
 - a- E₁₁,
 - b- E12,
 - c- D_{N1}, and
 - d- D_{N2}.
- 5) a- Find **H** in Cartesian components at p(2, 3, 4) if there is a current filament on the z axis carrying 8 mA in the az direction. (10 degrees)
 - b- Repeat if the filament is located at x = -1, y = 2.
 - c- Find H if both filaments are present.
- 6) For a plane wave propagates in a lossless material, find: (10 degrees)
 - a- Attenuation constant,
 - b- Phase constant,
 - c- Phase velocity,
 - d- Group velocity, and
 - e- Wave impedance.